1,484 research outputs found

    Maternity and paternity rights and benefits: survey of parents 2005

    Get PDF

    Automatic summarization of rushes video using bipartite graphs

    Get PDF
    In this paper we present a new approach for automatic summarization of rushes, or unstructured video. Our approach is composed of three major steps. First, based on shot and sub-shot segmentations, we filter sub-shots with low information content not likely to be useful in a summary. Second, a method using maximal matching in a bipartite graph is adapted to measure similarity between the remaining shots and to minimize inter-shot redundancy by removing repetitive retake shots common in rushes video. Finally, the presence of faces and motion intensity are characterised in each sub-shot. A measure of how representative the sub-shot is in the context of the overall video is then proposed. Video summaries composed of keyframe slideshows are then generated. In order to evaluate the effectiveness of this approach we re-run the evaluation carried out by TRECVid, using the same dataset and evaluation metrics used in the TRECVid video summarization task in 2007 but with our own assessors. Results show that our approach leads to a significant improvement on our own work in terms of the fraction of the TRECVid summary ground truth included and is competitive with the best of other approaches in TRECVid 2007

    High-level feature detection from video in TRECVid: a 5-year retrospective of achievements

    Get PDF
    Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    The effect of personality on collaborative task performance and interaction

    Get PDF
    Collocated, multi-user technologies, which support group-work are becoming increasingly popular. Examples include MERL's Diamondtouch and Microsoft's Surface, both of which have evolved from research prototypes to commercial products. Many applications have been developed for such technologies which support the work and entertainment needs of small groups of people. None of these applications however, have been studied in terms of the interactions and performances of their users with regards to their personality. In this paper, we address this research gap by conducting a series of user studies involving dyads working on a number of multi-user applications on the DiamondTouch tabletop device

    A content-based retrieval system for UAV-like video and associated metadata

    Get PDF
    In this paper we provide an overview of a content-based retrieval (CBR) system that has been specifically designed for handling UAV video and associated meta-data. Our emphasis in designing this system is on managing large quantities of such information and providing intuitive and efficient access mechanisms to this content, rather than on analysis of the video content. The retrieval unit in our system is termed a "trip". At capture time, each trip consists of an MPEG-1 video stream and a set of time stamped GPS locations. An analysis process automatically selects and associates GPS locations with the video timeline. The indexed trip is then stored in a shared trip repository. The repository forms the backend of a MPEG-211 compliant Web 2.0 application for subsequent querying, browsing, annotation and video playback. The system interface allows users to search/browse across the entire archive of trips and, depending on their access rights, to annotate other users' trips with additional information. Interaction with the CBR system is via a novel interactive map-based interface. This interface supports content access by time, date, region of interest on the map, previously annotated specific locations of interest and combinations of these. To develop such a system and investigate its practical usefulness in real world scenarios, clearly a significant amount of appropriate data is required. In the absence of a large volume of UAV data with which to work, we have simulated UAV-like data using GPS tagged video content captured from moving vehicles
    corecore